Rapid and adaptive evolution of MHC genes under parasite selection in experimental vertebrate populations
نویسندگان
چکیده
The genes of the major histocompatibility complex are the most polymorphic genes in vertebrates, with more than 1,000 alleles described in human populations. How this polymorphism is maintained, however, remains an evolutionary puzzle. Major histocompatibility complex genes have a crucial function in the adaptive immune system by presenting parasite-derived antigens to T lymphocytes. Because of this function, varying parasite-mediated selection has been proposed as a major evolutionary force for maintaining major histocompatibility complex polymorphism. A necessary prerequisite of such a balancing selection process is rapid major histocompatibility complex allele frequency shifts resulting from emerging selection by a specific parasite. Here we show in six experimental populations of sticklebacks, each exposed to one of two different parasites, that only those major histocompatibility complex alleles providing resistance to the respective specific parasite increased in frequency in the next host generation. This result demonstrates experimentally that varying parasite selection causes rapid adaptive evolutionary changes, thus facilitating the maintenance of major histocompatibility complex polymorphism.
منابع مشابه
Neutral and selective processes shape MHC gene diversity and expression in stocked brook charr populations (Salvelinus fontinalis).
The capacity of an individual to battle infection is an important fitness determinant in wild vertebrate populations. The major histocompatibility complex (MHC) genes are crucial for a host's adaptive immune system to detect pathogens. However, anthropogenic activities may disrupt natural cycles of co-evolution between hosts and pathogens. In this study, we investigated the dynamic sequence and...
متن کاملIdentification and characterization of major histocompatibility complex class IIB alleles from three species of European ranid frogs
Immune genes of the major histocompatibility complex (MHC) are among the most polymorphic genes in the vertebrate genome. Due to their polymorphic nature, they are often used to assess the adaptive genetic variability of natural populations. This study describes the first molecular characterization of 13 partial MHC class IIB sequences from three European ranid frogs. The utility of previously...
متن کاملMaintaining functional major histocompatibility complex diversity under inbreeding: the case of a selfing vertebrate.
Major histocompatibility complex (MHC) genes encode proteins that present pathogen-derived antigens to T-cells, initiating the adaptive immune response in vertebrates. Although populations with low MHC diversity tend to be more susceptible to pathogens, some bottlenecked populations persist and even increase in numbers despite low MHC diversity. Thus, the relative importance of MHC diversity ve...
متن کاملSexual selection and the evolutionary dynamics of the major histocompatibility complex.
The genes of the major histocompatibility complex (MHC) are a key component of the adaptive immune system and among the most variable loci in the vertebrate genome. Pathogen-mediated natural selection and MHC-based disassortative mating are both thought to structure MHC polymorphism, but their effects have proven difficult to discriminate in natural systems. Using the first model of MHC dynamic...
متن کاملSpatially variable coevolution between a haemosporidian parasite and the MHC of a widely distributed passerine
The environment shapes host-parasite interactions, but how environmental variation affects the diversity and composition of parasite-defense genes of hosts is unresolved. In vertebrates, the highly variable major histocompatibility complex (MHC) gene family plays an essential role in the adaptive immune system by recognizing pathogen infection and initiating the cellular immune response. Invest...
متن کامل